1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
//! A Hardware Abstraction Layer (HAL) for embedded systems //! //! **NOTE** This HAL is still is active development. Expect the traits presented here to be //! tweaked, split or be replaced wholesale before being stabilized, i.e. before hitting the 1.0.0 //! release. //! //! **NOTE** If you want to use an alpha release of the 1.0.0 version, use an exact version //! specifier in your `Cargo.toml` like: `embedded-hal = "=1.0.0-alpha.2"`. //! //! # Design goals //! //! The HAL //! //! - Must *erase* device specific details. Neither register, register blocks or magic values should //! appear in the API. //! //! - Must be generic *within* a device and *across* devices. The API to use a serial interface must //! be the same regardless of whether the implementation uses the USART1 or UART4 peripheral of a //! device or the UART0 peripheral of another device. //! //! - Where possible must *not* be tied to a specific asynchronous model. The API should be usable //! in blocking mode, with the `futures` model, with an async/await model or with a callback model. //! (cf. the [`nb`] crate) //! //! - Must be minimal, and thus easy to implement and zero cost, yet highly composable. People that //! want higher level abstraction should *prefer to use this HAL* rather than *re-implement* //! register manipulation code. //! //! - Serve as a foundation for building an ecosystem of platform agnostic drivers. Here driver //! means a library crate that lets a target platform interface an external device like a digital //! sensor or a wireless transceiver. The advantage of this system is that by writing the driver as //! a generic library on top of `embedded-hal` driver authors can support any number of target //! platforms (e.g. Cortex-M microcontrollers, AVR microcontrollers, embedded Linux, etc.). The //! advantage for application developers is that by adopting `embedded-hal` they can unlock all //! these drivers for their platform. //! //! # Out of scope //! //! - Initialization and configuration stuff like "ensure this serial interface and that SPI //! interface are not using the same pins". The HAL will focus on *doing I/O*. //! //! # Reference implementation //! //! The [`stm32f1xx-hal`] crate contains a reference implementation of this HAL. //! //! [`stm32f1xx-hal`]: https://crates.io/crates/stm32f1xx-hal //! //! # Platform agnostic drivers //! //! You can find platform agnostic drivers built on top of `embedded-hal` on crates.io by [searching //! for the *embedded-hal* keyword](https://crates.io/keywords/embedded-hal). //! //! If you are writing a platform agnostic driver yourself you are highly encouraged to [add the //! embedded-hal keyword](https://doc.rust-lang.org/cargo/reference/manifest.html#package-metadata) //! to your crate before publishing it! //! //! # Detailed design //! //! ## Traits //! //! The HAL is specified as traits to allow generic programming. These traits make use of the //! [`nb`][] crate (*please go read that crate documentation before continuing*) to abstract over //! the asynchronous model and to also provide a blocking operation mode. //! //! [`nb`]: https://crates.io/crates/nb //! //! Here's how a HAL trait may look like: //! //! ``` //! use nb; //! //! /// A serial interface //! pub trait Serial { //! /// Error type associated to this serial interface //! type Error; //! //! /// Reads a single byte //! fn try_read(&mut self) -> nb::Result<u8, Self::Error>; //! //! /// Writes a single byte //! fn try_write(&mut self, byte: u8) -> nb::Result<(), Self::Error>; //! } //! ``` //! //! The `nb::Result` enum is used to add a [`WouldBlock`] variant to the errors //! of the serial interface. As explained in the documentation of the `nb` crate this single API, //! when paired with the macros in the `nb` crate, can operate in a blocking manner, or be adapted //! to other asynchronous execution schemes. //! //! [`WouldBlock`]: https://docs.rs/nb/0.1.0/nb/enum.Error.html //! //! Some traits, like the one shown below, may expose possibly blocking APIs that can't fail. In //! those cases `nb::Result<_, Infallible>` is used. //! //! ``` //! use nb; //! //! # use std as core; //! use ::core::convert::Infallible; //! //! /// A count down timer //! pub trait CountDown { //! // .. //! //! /// "waits" until the count down is over //! fn try_wait(&mut self) -> nb::Result<(), Infallible>; //! } //! //! # fn main() {} //! ``` //! //! ## Suggested implementation //! //! The HAL traits should be implemented for device crates generated via [`svd2rust`] to maximize //! code reuse. //! //! [`svd2rust`]: https://crates.io/crates/svd2rust //! //! Shown below is an implementation of some of the HAL traits for the [`stm32f1xx-hal`] crate. This //! single implementation will work for *any* microcontroller in the STM32F1xx family. //! //! [`stm32f1`]: https://crates.io/crates/stm32f1 //! //! ```not_run //! // crate: stm32f1xx-hal //! // An implementation of the `embedded-hal` traits for STM32F1xx microcontrollers //! //! use embedded_hal as hal; //! use nb; //! //! // device crate //! use stm32f1::stm32f103::USART1; //! //! /// A serial interface //! // NOTE generic over the USART peripheral //! pub struct Serial<USART> { usart: USART } //! //! // convenience type alias //! pub type Serial1 = Serial<USART1>; //! //! /// Serial interface error //! pub enum Error { //! /// Buffer overrun //! Overrun, //! // omitted: other error variants //! } //! //! impl hal::serial::Read<u8> for Serial<USART1> { //! type Error = Error; //! //! fn try_read(&mut self) -> nb::Result<u8, Error> { //! // read the status register //! let isr = self.usart.isr.read(); //! //! if isr.ore().bit_is_set() { //! // Error: Buffer overrun //! Err(nb::Error::Other(Error::Overrun)) //! } //! // omitted: checks for other errors //! else if isr.rxne().bit_is_set() { //! // Data available: read the data register //! Ok(self.usart.rdr.read().bits() as u8) //! } else { //! // No data available yet //! Err(nb::Error::WouldBlock) //! } //! } //! } //! //! impl hal::serial::Write<u8> for Serial<USART1> { //! type Error = Error; //! //! fn try_write(&mut self, byte: u8) -> nb::Result<(), Error> { //! // Similar to the `try_read` implementation //! # Ok(()) //! } //! //! fn try_flush(&mut self) -> nb::Result<(), Error> { //! // Similar to the `try_read` implementation //! # Ok(()) //! } //! } //! //! # fn main() {} //! ``` //! //! ## Intended usage //! //! Thanks to the [`nb`] crate the HAL API can be used in a blocking manner //! with the [`block!`] macro or with `futures`. //! //! [`block!`]: https://docs.rs/nb/1.0.0/nb/macro.block.html //! //! ### Blocking mode //! //! An example of sending a string over the serial interface in a blocking //! fashion: //! //! ``` //! use crate::stm32f1xx_hal::Serial1; //! use embedded_hal::serial::Write; //! use nb::block; //! //! # fn main() { //! let mut serial: Serial1 = { //! // .. //! # Serial1 //! }; //! //! for byte in b"Hello, world!" { //! // NOTE `block!` blocks until `serial.try_write()` completes and returns //! // `Result<(), Error>` //! block!(serial.try_write(*byte)).unwrap(); //! } //! # } //! //! # mod stm32f1xx_hal { //! # use nb; //! # use core::convert::Infallible; //! # pub struct Serial1; //! # impl Serial1 { //! # pub fn try_write(&mut self, _: u8) -> nb::Result<(), Infallible> { //! # Ok(()) //! # } //! # } //! # } //! ``` //! //! ## Generic programming and higher level abstractions //! //! The core of the HAL has been kept minimal on purpose to encourage building **generic** higher //! level abstractions on top of it. Some higher level abstractions that pick an asynchronous model //! or that have blocking behavior and that are deemed useful to build other abstractions can be //! found in the `blocking` module. //! //! Some examples: //! //! **NOTE** All the functions shown below could have been written as trait //! methods with default implementation to allow specialization, but they have //! been written as functions to keep things simple. //! //! - Write a whole buffer to a serial device in blocking a fashion. //! //! ``` //! use embedded_hal as hal; //! use nb::block; //! use hal::prelude::*; //! //! fn write_all<S>(serial: &mut S, buffer: &[u8]) -> Result<(), S::Error> //! where //! S: hal::serial::Write<u8> //! { //! for &byte in buffer { //! block!(serial.try_write(byte))?; //! } //! //! Ok(()) //! } //! //! # fn main() {} //! ``` //! //! - Blocking serial read with timeout //! //! ``` //! use embedded_hal as hal; //! use nb; //! //! use hal::prelude::*; //! //! enum Error<SE, TE> { //! /// Serial interface error //! Serial(SE), //! /// Timeout error //! TimedOut(TE), //! } //! //! fn read_with_timeout<S, T>( //! serial: &mut S, //! timer: &mut T, //! timeout: T::Time, //! ) -> Result<u8, Error<S::Error, T::Error>> //! where //! T: hal::timer::CountDown<Error = ()>, //! S: hal::serial::Read<u8>, //! { //! timer.try_start(timeout).map_err(Error::TimedOut)?; //! //! loop { //! match serial.try_read() { //! // raise error //! Err(nb::Error::Other(e)) => return Err(Error::Serial(e)), //! Err(nb::Error::WouldBlock) => { //! // no data available yet, check the timer below //! }, //! Ok(byte) => return Ok(byte), //! } //! //! match timer.try_wait() { //! Err(nb::Error::Other(e)) => { //! // The error type specified by `timer.try_wait()` is `!`, which //! // means no error can actually occur. The Rust compiler //! // still forces us to provide this match arm, though. //! unreachable!() //! }, //! // no timeout yet, try again //! Err(nb::Error::WouldBlock) => continue, //! Ok(()) => return Err(Error::TimedOut(())), //! } //! } //! } //! //! # fn main() {} //! ``` //! //! - Buffered serial interface with periodic flushing in interrupt handler //! //! ``` //! # use std as core; //! use embedded_hal as hal; //! use nb; //! //! use hal::prelude::*; //! use ::core::convert::Infallible; //! //! fn flush<S>(serial: &mut S, cb: &mut CircularBuffer) //! where //! S: hal::serial::Write<u8, Error = Infallible>, //! { //! loop { //! if let Some(byte) = cb.peek() { //! match serial.try_write(*byte) { //! Err(nb::Error::Other(_)) => unreachable!(), //! Err(nb::Error::WouldBlock) => return, //! Ok(()) => {}, // keep flushing data //! } //! } //! //! cb.pop(); //! } //! } //! //! // The stuff below could be in some other crate //! //! /// Global singleton //! pub struct BufferedSerial1; //! //! // NOTE private //! static BUFFER1: Mutex<CircularBuffer> = { //! // .. //! # Mutex(CircularBuffer) //! }; //! static SERIAL1: Mutex<Serial1> = { //! // .. //! # Mutex(Serial1) //! }; //! //! impl BufferedSerial1 { //! pub fn write(&self, byte: u8) { //! self.write_all(&[byte]) //! } //! //! pub fn write_all(&self, bytes: &[u8]) { //! let mut buffer = BUFFER1.lock(); //! for byte in bytes { //! buffer.push(*byte).expect("buffer overrun"); //! } //! // omitted: pend / enable interrupt_handler //! } //! } //! //! fn interrupt_handler() { //! let mut serial = SERIAL1.lock(); //! let mut buffer = BUFFER1.lock(); //! //! flush(&mut *serial, &mut buffer); //! } //! //! # struct Mutex<T>(T); //! # impl<T> Mutex<T> { //! # fn lock(&self) -> RefMut<T> { unimplemented!() } //! # } //! # struct RefMut<'a, T>(&'a mut T) where T: 'a; //! # impl<'a, T> ::core::ops::Deref for RefMut<'a, T> { //! # type Target = T; //! # fn deref(&self) -> &T { self.0 } //! # } //! # impl<'a, T> ::core::ops::DerefMut for RefMut<'a, T> { //! # fn deref_mut(&mut self) -> &mut T { self.0 } //! # } //! # struct Serial1; //! # impl hal::serial::Write<u8> for Serial1 { //! # type Error = Infallible; //! # fn try_write(&mut self, _: u8) -> nb::Result<(), Infallible> { Err(::nb::Error::WouldBlock) } //! # fn try_flush(&mut self) -> nb::Result<(), Infallible> { Err(::nb::Error::WouldBlock) } //! # } //! # struct CircularBuffer; //! # impl CircularBuffer { //! # pub fn peek(&mut self) -> Option<&u8> { None } //! # pub fn pop(&mut self) -> Option<u8> { None } //! # pub fn push(&mut self, _: u8) -> Result<(), ()> { Ok(()) } //! # } //! //! # fn main() {} //! ``` #![doc(html_root_url = "https://docs.rs/embedded-hal/1.0.0-alpha.4")] #![deny(missing_docs)] #![no_std] pub mod adc; pub mod blocking; pub mod capture; pub mod digital; pub mod fmt; pub mod prelude; pub mod pwm; pub mod qei; pub mod rng; pub mod serial; pub mod spi; pub mod timer; pub mod watchdog; mod private { use crate::blocking::i2c::{SevenBitAddress, TenBitAddress}; pub trait Sealed {} impl Sealed for SevenBitAddress {} impl Sealed for TenBitAddress {} }