1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//! A simple 2D vector.

use libm; ////
use core::fmt; ////
////use std::fmt;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; ////
////use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};

use crate::{Point, Size};

/// A 2D vector.
///
/// This is intended primarily for a vector in the mathematical sense,
/// but it can be interpreted as a translation, and converted to and
/// from a point (vector relative to the origin) and size.
#[derive(Clone, Copy, Default, Debug, PartialEq)]
pub struct Vec2 {
    pub x: f64,
    pub y: f64,
}

impl Vec2 {
    /// The vector (0, 0).
    pub const ZERO: Vec2 = Vec2::new(0., 0.);

    /// Create a new vector.
    #[inline]
    pub const fn new(x: f64, y: f64) -> Vec2 {
        Vec2 { x, y }
    }

    /// Convert this vector into a `Point`.
    #[inline]
    pub const fn to_point(self) -> Point {
        Point::new(self.x, self.y)
    }

    /// Convert this vector into a `Size`.
    #[inline]
    pub const fn to_size(self) -> Size {
        Size::new(self.x, self.y)
    }

    /// Dot product of two vectors.
    #[inline]
    pub fn dot(&self, other: Vec2) -> f64 {
        self.x * other.x + self.y * other.y
    }

    /// Cross product of two vectors.
    ///
    /// This is signed so that (0, 1) × (1, 0) = 1.
    #[inline]
    pub fn cross(&self, other: Vec2) -> f64 {
        self.x * other.y - self.y * other.x
    }

    /// Magnitude of vector.
    #[inline]
    pub fn hypot(&self) -> f64 {
        libm::hypot(self.x, self.y) ////
        ////self.x.hypot(self.y)
    }

    /// Magnitude squared of vector.
    #[inline]
    pub fn hypot2(&self) -> f64 {
        self.dot(*self)
    }

    /// Angle of vector.
    ///
    /// If the vector is interpreted as a complex number, this is the argument.
    /// The angle is expressed in radians.
    #[inline]
    pub fn atan2(&self) -> f64 {
        libm::atan2(self.y, self.x) ////
        ////self.y.atan2(self.x)
    }

    /// A unit vector of the given angle.
    ///
    /// With `th` at zero, the result is the positive X unit vector, and
    /// at π/2, it is the positive Y unit vector. The angle is expressed
    /// in radians.
    ///
    /// Thus, in a Y-down coordinate system (as is common for graphics),
    /// it is a clockwise rotation, and in Y-up (traditional for math), it
    /// is anti-clockwise. This convention is consistent with
    /// [`Affine::rotate`](struct.Affine.html#method.rotate).
    #[inline]
    pub fn from_angle(th: f64) -> Vec2 {
        Vec2 {
            x: libm::cos(th),
            y: libm::sin(th),
        }
    }

    /// Linearly interpolate between two vectors.
    #[inline]
    pub fn lerp(&self, other: Vec2, t: f64) -> Vec2 {
        *self + t * (other - *self)
    }

    /// Returns a vector of magnitude 1.0 with the same angle as `self`; i.e.
    /// a unit/direction vector.
    ///
    /// This produces `NaN` values when the magnitutde is `0`.
    #[inline]
    pub fn normalize(self) -> Vec2 {
        self / self.hypot()
    }

    /// Returns a new `Vec2` with each of `x` and `y` rounded to the nearest integer.
    #[inline]
    pub fn round(self) -> Vec2 {
        Vec2::new(libm::round(self.x), libm::round(self.y)) ////
        ////Vec2::new(self.x.round(), self.y.round())
    }

    /// Returns a new `Vec2` where each of `x` and `y`, with a non-zero fractional
    /// part is rounded up to the nearest integer.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Vec2;
    ///
    /// let v = Vec2::new(5.0, -1.1);
    /// let ceil_v = v.ceil();
    /// assert_eq!((ceil_v.x, ceil_v.y), (5.0, -1.0));
    /// ```
    #[inline]
    pub fn ceil(self) -> Vec2 {
        Vec2::new(libm::ceil(self.x), libm::ceil(self.y)) ////
        ////Vec2::new(self.x.ceil(), self.y.ceil())
    }

    /// Returns a new `Vec2` where each of `x` and `y`, with a non-zero fractional
    /// part is rounded down to the nearest integer.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Vec2;
    ///
    /// let v = Vec2::new(4.9, -1.1);
    /// let floor_v = v.floor();
    /// assert_eq!((floor_v.x, floor_v.y), (4.0, -2.0));
    /// ```
    #[inline]
    pub fn floor(self) -> Vec2 {
        Vec2::new(libm::floor(self.x), libm::floor(self.y)) ////
        ////Vec2::new(self.x.floor(), self.y.floor())
    }
}

impl From<(f64, f64)> for Vec2 {
    #[inline]
    fn from(v: (f64, f64)) -> Vec2 {
        Vec2 { x: v.0, y: v.1 }
    }
}

impl From<Vec2> for (f64, f64) {
    #[inline]
    fn from(v: Vec2) -> (f64, f64) {
        (v.x, v.y)
    }
}

impl Add for Vec2 {
    type Output = Vec2;

    #[inline]
    fn add(self, other: Vec2) -> Vec2 {
        Vec2 {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

impl AddAssign for Vec2 {
    #[inline]
    fn add_assign(&mut self, other: Vec2) {
        *self = Vec2 {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

impl Sub for Vec2 {
    type Output = Vec2;

    #[inline]
    fn sub(self, other: Vec2) -> Vec2 {
        Vec2 {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

impl SubAssign for Vec2 {
    #[inline]
    fn sub_assign(&mut self, other: Vec2) {
        *self = Vec2 {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

impl Mul<f64> for Vec2 {
    type Output = Vec2;

    #[inline]
    fn mul(self, other: f64) -> Vec2 {
        Vec2 {
            x: self.x * other,
            y: self.y * other,
        }
    }
}

impl MulAssign<f64> for Vec2 {
    #[inline]
    fn mul_assign(&mut self, other: f64) {
        *self = Vec2 {
            x: self.x * other,
            y: self.y * other,
        };
    }
}

impl Mul<Vec2> for f64 {
    type Output = Vec2;

    #[inline]
    fn mul(self, other: Vec2) -> Vec2 {
        other * self
    }
}

impl Div<f64> for Vec2 {
    type Output = Vec2;

    /// Note: division by a scalar is implemented by multiplying by the reciprocal.
    ///
    /// This is more efficient but has different roundoff behavior than division.
    #[inline]
    fn div(self, other: f64) -> Vec2 {
        self * other.recip()
    }
}

impl DivAssign<f64> for Vec2 {
    #[inline]
    fn div_assign(&mut self, other: f64) {
        *self *= other.recip();
    }
}

impl Neg for Vec2 {
    type Output = Vec2;

    #[inline]
    fn neg(self) -> Vec2 {
        Vec2 {
            x: -self.x,
            y: -self.y,
        }
    }
}

impl fmt::Display for Vec2 {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "𝐯=(")?;
        fmt::Display::fmt(&self.x, formatter)?;
        write!(formatter, ", ")?;
        fmt::Display::fmt(&self.y, formatter)?;
        write!(formatter, ")")
    }
}

// Conversions to and from mint
#[cfg(feature = "mint")]
impl From<Vec2> for mint::Vector2<f64> {
    #[inline]
    fn from(p: Vec2) -> mint::Vector2<f64> {
        mint::Vector2 { x: p.x, y: p.y }
    }
}

#[cfg(feature = "mint")]
impl From<mint::Vector2<f64>> for Vec2 {
    #[inline]
    fn from(p: mint::Vector2<f64>) -> Vec2 {
        Vec2 { x: p.x, y: p.y }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn display() {
        let v = Vec2::new(1.2332421, 532.10721213123);
        let s = format!("{:.2}", v);
        assert_eq!(s.as_str(), "𝐯=(1.23, 532.11)");
    }
}