1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//! A transformation that includes both scale and translation.

use core::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign}; ////
////use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};

use crate::{Affine, Circle, CubicBez, Line, Point, QuadBez, Rect, RoundedRect, Vec2};

/// A transformation including scaling and translation.
///
/// If the translation is `(x, y)` and the scale is `s`, then this
/// transformation represents this augmented matrix:
///
/// ```text
/// | s 0 x |
/// | 0 s y |
/// | 0 0 1 |
/// ```
///
/// See [`Affine`](struct.Affine.html) for more details about the
/// equivalence with augmented matrices.
///
/// Various multiplication ops are defined, and these are all defined
/// to be consistent with matrix multiplication. Therefore,
/// `TranslateScale * Point` is defined but not the other way around.
///
/// Also note that multiplication is not commutative. Thus,
/// `TranslateScale::scale(2.0) * TranslateScale::translate(Vec2::new(1.0, 0.0))`
/// has a translation of (2, 0), while
/// `TranslateScale::translate(Vec2::new(1.0, 0.0)) * TranslateScale::scale(2.0)`
/// has a translation of (1, 0). (Both have a scale of 2; also note that
/// the first case can be written
/// `2.0 * TranslateScale::translate(Vec2::new(1.0, 0.0))` as this case
/// has an implicit conversion).
///
/// This transformation is less powerful than `Affine`, but can be applied
/// to more primitives, especially including [`Rect`](struct.Rect.html).
#[derive(Clone, Copy, Debug)]
pub struct TranslateScale {
    translation: Vec2,
    scale: f64,
}

impl TranslateScale {
    /// Create a new transformation from translation and scale.
    #[inline]
    pub const fn new(translation: Vec2, scale: f64) -> TranslateScale {
        TranslateScale { translation, scale }
    }

    /// Create a new transformation with scale only.
    #[inline]
    pub const fn scale(s: f64) -> TranslateScale {
        TranslateScale::new(Vec2::ZERO, s)
    }

    /// Create a new transformation with translation only.
    #[inline]
    pub const fn translate(t: Vec2) -> TranslateScale {
        TranslateScale::new(t, 1.0)
    }

    /// Decompose transformation into translation and scale.
    pub fn as_tuple(self) -> (Vec2, f64) {
        (self.translation, self.scale)
    }

    /// Compute the inverse transform.
    ///
    /// Multiplying a transform with its inverse (either on the
    /// left or right) results in the identity transform
    /// (modulo floating point rounding errors).
    ///
    /// Produces NaN values when scale is zero.
    pub fn inverse(self) -> TranslateScale {
        let scale_recip = self.scale.recip();
        TranslateScale {
            translation: self.translation * -scale_recip,
            scale: scale_recip,
        }
    }
}

impl Default for TranslateScale {
    #[inline]
    fn default() -> TranslateScale {
        TranslateScale::scale(1.0)
    }
}

impl From<TranslateScale> for Affine {
    fn from(ts: TranslateScale) -> Affine {
        let TranslateScale { translation, scale } = ts;
        Affine::new([scale, 0.0, 0.0, scale, translation.x, translation.y])
    }
}

impl Mul<Point> for TranslateScale {
    type Output = Point;

    #[inline]
    fn mul(self, other: Point) -> Point {
        (self.scale * other.to_vec2()).to_point() + self.translation
    }
}

impl Mul for TranslateScale {
    type Output = TranslateScale;

    #[inline]
    fn mul(self, other: TranslateScale) -> TranslateScale {
        TranslateScale {
            translation: self.translation + self.scale * other.translation,
            scale: self.scale * other.scale,
        }
    }
}

impl MulAssign for TranslateScale {
    #[inline]
    fn mul_assign(&mut self, other: TranslateScale) {
        *self = self.mul(other);
    }
}

impl Mul<TranslateScale> for f64 {
    type Output = TranslateScale;

    #[inline]
    fn mul(self, other: TranslateScale) -> TranslateScale {
        TranslateScale {
            translation: other.translation * self,
            scale: other.scale * self,
        }
    }
}

impl Add<Vec2> for TranslateScale {
    type Output = TranslateScale;

    #[inline]
    fn add(self, other: Vec2) -> TranslateScale {
        TranslateScale {
            translation: self.translation + other,
            scale: self.scale,
        }
    }
}

impl Add<TranslateScale> for Vec2 {
    type Output = TranslateScale;

    #[inline]
    fn add(self, other: TranslateScale) -> TranslateScale {
        other + self
    }
}

impl AddAssign<Vec2> for TranslateScale {
    #[inline]
    fn add_assign(&mut self, other: Vec2) {
        *self = self.add(other);
    }
}

impl Sub<Vec2> for TranslateScale {
    type Output = TranslateScale;

    #[inline]
    fn sub(self, other: Vec2) -> TranslateScale {
        TranslateScale {
            translation: self.translation - other,
            scale: self.scale,
        }
    }
}

impl SubAssign<Vec2> for TranslateScale {
    #[inline]
    fn sub_assign(&mut self, other: Vec2) {
        *self = self.sub(other);
    }
}

impl Mul<Circle> for TranslateScale {
    type Output = Circle;

    #[inline]
    fn mul(self, other: Circle) -> Circle {
        Circle::new(self * other.center, self.scale * other.radius)
    }
}

impl Mul<Line> for TranslateScale {
    type Output = Line;

    #[inline]
    fn mul(self, other: Line) -> Line {
        Line::new(self * other.p0, self * other.p1)
    }
}

impl Mul<Rect> for TranslateScale {
    type Output = Rect;

    #[inline]
    fn mul(self, other: Rect) -> Rect {
        let pt0 = self * Point::new(other.x0, other.y0);
        let pt1 = self * Point::new(other.x1, other.y1);
        (pt0, pt1).into()
    }
}

impl Mul<RoundedRect> for TranslateScale {
    type Output = RoundedRect;

    #[inline]
    fn mul(self, other: RoundedRect) -> RoundedRect {
        RoundedRect::from_rect(self * other.rect(), self.scale * other.radius())
    }
}

impl Mul<QuadBez> for TranslateScale {
    type Output = QuadBez;

    #[inline]
    fn mul(self, other: QuadBez) -> QuadBez {
        QuadBez::new(self * other.p0, self * other.p1, self * other.p2)
    }
}

impl Mul<CubicBez> for TranslateScale {
    type Output = CubicBez;

    #[inline]
    fn mul(self, other: CubicBez) -> CubicBez {
        CubicBez::new(
            self * other.p0,
            self * other.p1,
            self * other.p2,
            self * other.p3,
        )
    }
}

#[cfg(test)]
mod tests {
    use crate::{Affine, Point, TranslateScale, Vec2};

    fn assert_near(p0: Point, p1: Point) {
        assert!((p1 - p0).hypot() < 1e-9, "{:?} != {:?}", p0, p1);
    }

    #[test]
    fn translate_scale() {
        let p = Point::new(3.0, 4.0);
        let ts = TranslateScale::new(Vec2::new(5.0, 6.0), 2.0);

        assert_near(ts * p, Point::new(11.0, 14.0));
    }

    #[test]
    fn conversions() {
        let p = Point::new(3.0, 4.0);
        let s = 2.0;
        let t = Vec2::new(5.0, 6.0);
        let ts = TranslateScale::new(t, s);

        // Test that conversion to affine is consistent.
        let a: Affine = ts.into();
        assert_near(ts * p, a * p);

        assert_near((s * p.to_vec2()).to_point(), TranslateScale::scale(s) * p);
        assert_near(p + t, TranslateScale::translate(t) * p);
    }

    #[test]
    fn inverse() {
        let p = Point::new(3.0, 4.0);
        let ts = TranslateScale::new(Vec2::new(5.0, 6.0), 2.0);

        assert_near(p, (ts * ts.inverse()) * p);
        assert_near(p, (ts.inverse() * ts) * p);
    }
}