Files
aligned
app
arrayvec
as_slice
bare_metal
byteorder
cfg_if
cortex_m
cortex_m_rt
cstr_core
cty
druid
druid_shell
embedded_graphics
embedded_hal
generic_array
hash32
heapless
introsort
kurbo
libchip8
libm
log
memchr
mynewt
nb
num_traits
piet
piet_common
piet_embedded_graphics
r0
st7735_lcd
stable_deref_trait
typenum
unicode_segmentation
vcell
void
volatile_register
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
//! A 2d size.

use libm; ////
use crate::Vec2;
use core::fmt; ////
////use std::fmt;
use core::ops::{Mul, MulAssign};

/// A 2d size.
#[derive(Clone, Copy, Default, PartialEq)]
pub struct Size {
    /// The width.
    pub width: f64,
    /// The height.
    pub height: f64,
}

impl Size {
    /// A size with zero width or height.
    pub const ZERO: Size = Size::new(0., 0.);

    /// Create a new `Size` with the provided `width` and `height`.
    #[inline]
    pub const fn new(width: f64, height: f64) -> Self {
        Size { width, height }
    }

    /// Returns a new size bounded by `min` and `max.`
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Size;
    ///
    /// let this = Size::new(0., 100.);
    /// let min = Size::new(10., 10.,);
    /// let max = Size::new(50., 50.);
    /// assert_eq!(this.clamp(min, max), Size::new(10., 50.))
    /// ```
    pub fn clamp(self, min: Size, max: Size) -> Self {
        let width = self.width.max(min.width).min(max.width);
        let height = self.height.max(min.height).min(max.height);
        Size { width, height }
    }

    /// Convert this size into a `Vec2`, with `width` mapped to `x` and `height`
    /// mapped to `y`.
    #[inline]
    pub const fn to_vec2(self) -> Vec2 {
        Vec2::new(self.width, self.height)
    }

    /// A new `Size`, with each of width and height rounded to the nearest
    /// integer value.
    #[inline]
    pub fn round(self) -> Size {
        Size::new(libm::round(self.width), libm::round(self.height))
    }
}

impl fmt::Debug for Size {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}W×{:?}H", self.width, self.height)
    }
}

impl fmt::Display for Size {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "(")?;
        fmt::Display::fmt(&self.width, formatter)?;
        write!(formatter, "×")?;
        fmt::Display::fmt(&self.height, formatter)?;
        write!(formatter, ")")
    }
}

impl MulAssign<f64> for Size {
    #[inline]
    fn mul_assign(&mut self, other: f64) {
        *self = Size {
            width: self.width * other,
            height: self.height * other,
        };
    }
}

impl Mul<Size> for f64 {
    type Output = Size;

    #[inline]
    fn mul(self, other: Size) -> Size {
        other * self
    }
}

impl Mul<f64> for Size {
    type Output = Size;

    #[inline]
    fn mul(self, other: f64) -> Size {
        Size {
            width: self.width * other,
            height: self.height * other,
        }
    }
}

impl From<(f64, f64)> for Size {
    #[inline]
    fn from(v: (f64, f64)) -> Size {
        Size {
            width: v.0,
            height: v.1,
        }
    }
}

impl From<Size> for (f64, f64) {
    #[inline]
    fn from(v: Size) -> (f64, f64) {
        (v.width, v.height)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn display() {
        let s = Size::new(-0.12345, 9.87654);
        assert_eq!(format!("{}", s), "(-0.12345×9.87654)");

        let s = Size::new(-0.12345, 9.87654);
        assert_eq!(format!("{:+6.2}", s), "( -0.12× +9.88)");
    }
}