1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
//! A rectangle.

use libm; ////
use core::ops::{Add, Sub}; ////
////use std::ops::{Add, Sub};

use crate::{Insets, PathEl, Point, RoundedRect, Shape, Size, Vec2};

/// A rectangle.
#[derive(Clone, Copy, Default, Debug)]
pub struct Rect {
    /// The minimum x coordinate (left edge).
    pub x0: f64,
    /// The minimum y coordinate (top edge in y-down spaces).
    pub y0: f64,
    /// The maximum x coordinate (right edge).
    pub x1: f64,
    /// The maximum y coordinate (bottom edge in y-down spaces).
    pub y1: f64,
}

impl Rect {
    /// The empty rectangle at the origin.
    pub const ZERO: Rect = Rect::new(0., 0., 0., 0.);

    /// A new rectangle from minimum and maximum coordinates.
    #[inline]
    pub const fn new(x0: f64, y0: f64, x1: f64, y1: f64) -> Rect {
        Rect { x0, y0, x1, y1 }
    }

    /// A new rectangle from two points.
    ///
    /// The result will have non-negative width and height.
    #[inline]
    pub fn from_points(p0: impl Into<Point>, p1: impl Into<Point>) -> Rect {
        let p0 = p0.into();
        let p1 = p1.into();
        Rect {
            x0: p0.x,
            y0: p0.y,
            x1: p1.x,
            y1: p1.y,
        }
        .abs()
    }

    /// A new rectangle from origin and size.
    ///
    /// The result will have non-negative width and height.
    #[inline]
    pub fn from_origin_size(origin: impl Into<Point>, size: impl Into<Size>) -> Rect {
        let origin = origin.into();
        Rect::from_points(origin, origin + size.into().to_vec2())
    }

    /// Create a new `Rect` with the same size as `self` and a new origin.
    #[inline]
    pub fn with_origin(self, origin: impl Into<Point>) -> Rect {
        Rect::from_origin_size(origin, self.size())
    }

    /// Create a new `Rect` with the same origin as `self` and a new size.
    #[inline]
    pub fn with_size(self, size: impl Into<Size>) -> Rect {
        Rect::from_origin_size(self.origin(), size)
    }

    /// Create a new `Rect` by applying the [`Insets`].
    ///
    /// This will not preserve negative width and height.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Rect;
    /// let inset_rect = Rect::new(0., 0., 10., 10.,).inset(2.);
    /// assert_eq!(inset_rect.width(), 14.0);
    /// assert_eq!(inset_rect.x0, -2.0);
    /// assert_eq!(inset_rect.x1, 12.0);
    /// ```
    ///
    /// [`Insets`]: struct.Insets.html
    #[inline]
    pub fn inset(self, insets: impl Into<Insets>) -> Rect {
        self + insets.into()
    }

    /// The width of the rectangle.
    ///
    /// Note: nothing forbids negative width.
    #[inline]
    pub fn width(&self) -> f64 {
        self.x1 - self.x0
    }

    /// The height of the rectangle.
    ///
    /// Note: nothing forbids negative height.
    #[inline]
    pub fn height(&self) -> f64 {
        self.y1 - self.y0
    }

    /// Returns the minimum value for the x-coordinate of the rectangle.
    #[inline]
    pub fn min_x(&self) -> f64 {
        self.x0.min(self.x1)
    }

    /// Returns the maximum value for the x-coordinate of the rectangle.
    #[inline]
    pub fn max_x(&self) -> f64 {
        self.x0.max(self.x1)
    }

    /// Returns the minimum value for the y-coordinate of the rectangle.
    #[inline]
    pub fn min_y(&self) -> f64 {
        self.y0.min(self.y1)
    }

    /// Returns the maximum value for the y-coordinate of the rectangle.
    #[inline]
    pub fn max_y(&self) -> f64 {
        self.y0.max(self.y1)
    }

    /// The origin of the rectangle.
    ///
    /// This is the top left corner in a y-down space and with
    /// non-negative width and height.
    #[inline]
    pub fn origin(&self) -> Point {
        Point::new(self.x0, self.y0)
    }

    /// The size of the rectangle.
    #[inline]
    pub fn size(&self) -> Size {
        Size::new(self.width(), self.height())
    }

    /// The area of the rectangle.
    #[inline]
    pub fn area(&self) -> f64 {
        self.width() * self.height()
    }

    /// The center point of the rectangle.
    #[inline]
    pub fn center(&self) -> Point {
        Point::new(0.5 * (self.x0 + self.x1), 0.5 * (self.y0 + self.y1))
    }

    /// Returns `true` if `point` lies within `self`.
    #[inline]
    pub fn contains(&self, point: Point) -> bool {
        point.x >= self.x0 && point.x < self.x1 && point.y >= self.y0 && point.y < self.y1
    }

    /// Take absolute value of width and height.
    ///
    /// The resulting rect has the same extents as the original, but is
    /// guaranteed to have non-negative width and height.
    #[inline]
    pub fn abs(&self) -> Rect {
        let Rect { x0, y0, x1, y1 } = *self;
        Rect {
            x0: x0.min(x1),
            y0: y0.min(y1),
            x1: x0.max(x1),
            y1: y0.max(y1),
        }
    }

    /// The smallest rectangle enclosing two rectangles.
    ///
    /// Results are valid only if width and height are non-negative.
    #[inline]
    pub fn union(&self, other: Rect) -> Rect {
        Rect {
            x0: self.x0.min(other.x0),
            y0: self.y0.min(other.y0),
            x1: self.x1.max(other.x1),
            y1: self.y1.max(other.y1),
        }
    }

    /// Compute the union with one point.
    ///
    /// This method includes the perimeter of zero-area rectangles.
    /// Thus, a succession of `union_pt` operations on a series of
    /// points yields their enclosing rectangle.
    ///
    /// Results are valid only if width and height are non-negative.
    pub fn union_pt(&self, pt: Point) -> Rect {
        Rect::new(
            self.x0.min(pt.x),
            self.y0.min(pt.y),
            self.x1.max(pt.x),
            self.y1.max(pt.y),
        )
    }

    /// The intersection of two rectangles.
    ///
    /// The result is zero-area if either input has negative width or
    /// height. The result always has non-negative width and height.
    #[inline]
    pub fn intersect(&self, other: Rect) -> Rect {
        let x0 = self.x0.max(other.x0);
        let y0 = self.y0.max(other.y0);
        let x1 = self.x1.min(other.x1);
        let y1 = self.y1.min(other.y1);
        Rect {
            x0,
            y0,
            x1: x1.max(x0),
            y1: y1.max(y0),
        }
    }

    /// Expand a rectangle by a constant amount in both directions.
    ///
    /// The logic simply applies the amount in each direction. If rectangle
    /// area or added dimensions are negative, this could give odd results.
    pub fn inflate(&self, width: f64, height: f64) -> Rect {
        Rect {
            x0: self.x0 - width,
            y0: self.y0 - height,
            x1: self.x1 + width,
            y1: self.y1 + height,
        }
    }

    /// A new `Rect`, with each coordinate value rounded to the nearest integer.
    #[inline]
    pub fn round(self) -> Rect {
        Rect::new(
            libm::round(self.x0),
            libm::round(self.y0),
            libm::round(self.x1),
            libm::round(self.y1),
        )
    }

    /// Creates a new [`RoundedRect`] from this `Rect` and the provided
    /// corner radius.
    ///
    /// [`RoundedRect`]: struct.RoundedRect.html
    #[inline]
    pub fn to_rounded_rect(self, radius: f64) -> RoundedRect {
        RoundedRect::from_rect(self, radius)
    }
}

impl From<(Point, Point)> for Rect {
    fn from(points: (Point, Point)) -> Rect {
        Rect::from_points(points.0, points.1)
    }
}

impl From<(Point, Size)> for Rect {
    fn from(params: (Point, Size)) -> Rect {
        Rect::from_origin_size(params.0, params.1)
    }
}

impl Add<Vec2> for Rect {
    type Output = Rect;

    #[inline]
    fn add(self, v: Vec2) -> Rect {
        Rect {
            x0: self.x0 + v.x,
            y0: self.y0 + v.y,
            x1: self.x1 + v.x,
            y1: self.y1 + v.y,
        }
    }
}

impl Sub<Vec2> for Rect {
    type Output = Rect;

    #[inline]
    fn sub(self, v: Vec2) -> Rect {
        Rect {
            x0: self.x0 - v.x,
            y0: self.y0 - v.y,
            x1: self.x1 - v.x,
            y1: self.y1 - v.y,
        }
    }
}

impl Sub for Rect {
    type Output = Insets;

    #[inline]
    fn sub(self, other: Rect) -> Insets {
        let x0 = other.x0 - self.x0;
        let y0 = other.y0 - self.y0;
        let x1 = self.x1 - other.x1;
        let y1 = self.y1 - other.y1;
        Insets { x0, y0, x1, y1 }
    }
}

#[doc(hidden)]
pub struct RectPathIter {
    rect: Rect,
    ix: usize,
}

impl Shape for Rect {
    type BezPathIter = RectPathIter;

    fn to_bez_path(&self, _tolerance: f64) -> RectPathIter {
        RectPathIter { rect: *self, ix: 0 }
    }

    // It's a bit of duplication having both this and the impl method, but
    // removing that would require using the trait. We'll leave it for now.
    #[inline]
    fn area(&self) -> f64 {
        Rect::area(self)
    }

    #[inline]
    fn perimeter(&self, _accuracy: f64) -> f64 {
        2.0 * (libm::fabs(self.width()) + libm::fabs(self.height())) ////
        ////2.0 * (self.width().abs() + self.height().abs())
    }

    /// Note: this function is carefully designed so that if the plane is
    /// tiled with rectangles, the winding number will be nonzero for exactly
    /// one of them.
    #[inline]
    fn winding(&self, pt: Point) -> i32 {
        let xmin = self.x0.min(self.x1);
        let xmax = self.x0.max(self.x1);
        let ymin = self.y0.min(self.y1);
        let ymax = self.y0.max(self.y1);
        if pt.x >= xmin && pt.x < xmax && pt.y >= ymin && pt.y < ymax {
            if (self.x1 > self.x0) ^ (self.y1 > self.y0) {
                -1
            } else {
                1
            }
        } else {
            0
        }
    }

    #[inline]
    fn bounding_box(&self) -> Rect {
        self.abs()
    }

    #[inline]
    fn as_rect(&self) -> Option<Rect> {
        Some(*self)
    }
}

// This is clockwise in a y-down coordinate system for positive area.
impl Iterator for RectPathIter {
    type Item = PathEl;

    fn next(&mut self) -> Option<PathEl> {
        self.ix += 1;
        match self.ix {
            1 => Some(PathEl::MoveTo(Point::new(self.rect.x0, self.rect.y0))),
            2 => Some(PathEl::LineTo(Point::new(self.rect.x1, self.rect.y0))),
            3 => Some(PathEl::LineTo(Point::new(self.rect.x1, self.rect.y1))),
            4 => Some(PathEl::LineTo(Point::new(self.rect.x0, self.rect.y1))),
            5 => Some(PathEl::ClosePath),
            _ => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{Point, Rect, Shape};

    fn assert_approx_eq(x: f64, y: f64) {
        assert!((x - y).abs() < 1e-7);
    }

    #[test]
    fn area_sign() {
        let r = Rect::new(0.0, 0.0, 10.0, 10.0);
        let center = r.center();
        assert_approx_eq(r.area(), 100.0);

        assert_eq!(r.winding(center), 1);

        let p = r.into_bez_path(1e-9);
        assert_approx_eq(r.area(), p.area());
        assert_eq!(r.winding(center), p.winding(center));

        let r_flip = Rect::new(0.0, 10.0, 10.0, 0.0);
        assert_approx_eq(r_flip.area(), -100.0);

        assert_eq!(r_flip.winding(Point::new(5.0, 5.0)), -1);
        let p_flip = r_flip.into_bez_path(1e-9);
        assert_approx_eq(r_flip.area(), p_flip.area());
        assert_eq!(r_flip.winding(center), p_flip.winding(center));
    }
}