1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
//! A 2d point.

use libm; ////
use core::fmt; ////
////use std::fmt;
use core::ops::{Add, AddAssign, Sub, SubAssign}; ////
////use std::ops::{Add, AddAssign, Sub, SubAssign};

use crate::Vec2;

/// A 2d point.
#[derive(Clone, Copy, Default, PartialEq)]
pub struct Point {
    /// The x coordinate.
    pub x: f64,
    /// The y coordinate.
    pub y: f64,
}

impl Point {
    /// The point (0, 0).
    pub const ZERO: Point = Point::new(0., 0.);

    /// The point at the origin; (0, 0).
    pub const ORIGIN: Point = Point::new(0., 0.);

    /// Create a new `Point` with the provided `x` and `y` coordinates.
    #[inline]
    pub const fn new(x: f64, y: f64) -> Self {
        Point { x, y }
    }

    /// Convert this point into a `Vec2`.
    #[inline]
    pub const fn to_vec2(self) -> Vec2 {
        Vec2::new(self.x, self.y)
    }

    /// Linearly interpolate between two points.
    #[inline]
    pub fn lerp(self, other: Point, t: f64) -> Point {
        self.to_vec2().lerp(other.to_vec2(), t).to_point()
    }

    /// Determine the midpoint of two points.
    #[inline]
    pub fn midpoint(self, other: Point) -> Point {
        Point::new(0.5 * (self.x + other.x), 0.5 * (self.y + other.y))
    }

    /// Euclidean distance.
    #[inline]
    pub fn distance(self, other: Point) -> f64 {
        (self - other).hypot()
    }

    /// A new `Point`, with each of x and y rounded to the nearest integer value.
    #[inline]
    pub fn round(self) -> Point {
        Point::new(libm::round(self.x), libm::round(self.y))
    }
}

impl From<(f64, f64)> for Point {
    #[inline]
    fn from(v: (f64, f64)) -> Point {
        Point { x: v.0, y: v.1 }
    }
}

impl From<Point> for (f64, f64) {
    #[inline]
    fn from(v: Point) -> (f64, f64) {
        (v.x, v.y)
    }
}

impl Add<Vec2> for Point {
    type Output = Point;

    #[inline]
    fn add(self, other: Vec2) -> Self {
        Point::new(self.x + other.x, self.y + other.y)
    }
}

impl AddAssign<Vec2> for Point {
    #[inline]
    fn add_assign(&mut self, other: Vec2) {
        *self = Point::new(self.x + other.x, self.y + other.y)
    }
}

impl Sub<Vec2> for Point {
    type Output = Point;

    #[inline]
    fn sub(self, other: Vec2) -> Self {
        Point::new(self.x - other.x, self.y - other.y)
    }
}

impl SubAssign<Vec2> for Point {
    #[inline]
    fn sub_assign(&mut self, other: Vec2) {
        *self = Point::new(self.x - other.x, self.y - other.y)
    }
}

impl Sub<Point> for Point {
    type Output = Vec2;

    #[inline]
    fn sub(self, other: Point) -> Vec2 {
        Vec2::new(self.x - other.x, self.y - other.y)
    }
}

impl fmt::Debug for Point {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "({:?}, {:?})", self.x, self.y)
    }
}

impl fmt::Display for Point {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "(")?;
        fmt::Display::fmt(&self.x, formatter)?;
        write!(formatter, ", ")?;
        fmt::Display::fmt(&self.y, formatter)?;
        write!(formatter, ")")
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn point_arithmetic() {
        assert_eq!(
            Point::new(0., 0.) - Vec2::new(10., 0.),
            Point::new(-10., 0.)
        );
        assert_eq!(
            Point::new(0., 0.) - Point::new(-5., 101.),
            Vec2::new(5., -101.)
        );
    }

    #[test]
    fn distance() {
        let p1 = Point::new(0., 10.);
        let p2 = Point::new(0., 5.);
        assert_eq!(p1.distance(p2), 5.);

        let p1 = Point::new(-11., 1.);
        let p2 = Point::new(-7., -2.);
        assert_eq!(p1.distance(p2), 5.);
    }

    #[test]
    fn display() {
        let p = Point::new(0.12345, 9.87654);
        assert_eq!(format!("{}", p), "(0.12345, 9.87654)");

        let p = Point::new(0.12345, 9.87654);
        assert_eq!(format!("{:.2}", p), "(0.12, 9.88)");
    }
}

#[cfg(feature = "mint")]
impl From<Point> for mint::Point2<f64> {
    #[inline]
    fn from(p: Point) -> mint::Point2<f64> {
        mint::Point2 { x: p.x, y: p.y }
    }
}

#[cfg(feature = "mint")]
impl From<mint::Point2<f64>> for Point {
    #[inline]
    fn from(p: mint::Point2<f64>) -> Point {
        Point { x: p.x, y: p.y }
    }
}