1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
//! # Embedded graphics //! //! This crate aims to make drawing 2D graphics primitives super easy. It currently supports the //! following: //! //! * [1 bit-per-pixel images](./image/type.Image1BPP.html) //! * [8 bits-per-pixel images](./image/type.Image8BPP.html) //! * [16 bits-per-pixel images](./image/type.Image16BPP.html) //! * [BMP-format images](./image/struct.ImageBmp.html) (with `bmp` feature enabled) //! * [TGA-format images](./image/struct.ImageTga.html) (with `tga` feature enabled) //! * [Primitives](./primitives/index.html) //! * [Lines](./primitives/line/struct.Line.html) //! * [Rectangles (and squares)](./primitives/rectangle/struct.Rectangle.html) //! * [Circles](./primitives/circle/struct.Circle.html) //! * [Triangles](./primitives/triangle/struct.Triangle.html) //! * [Text with multiple fonts](./fonts/index.html#types) //! //! You can also add your own objects by implementing `IntoIterator<Item = Pixel<C>>` to create an //! iterator that [`Drawing#draw()`][`Drawing`] can consume. //! //! A core goal is to do the above without using any buffers; the crate should work without a //! dynamic memory allocator and without pre-allocating large chunks of memory. To achieve this, it //! takes an `Iterator` based approach, where pixel values and positions are calculated on the fly, //! with the minimum of saved state. This allows the consuming application to use far less RAM at //! little to no performance penalty. //! //! # Supported displays //! //! These are just some of the displays the community has added embedded_graphics support to. This //! list is taken from the [dependent crates //! list](https://crates.io/crates/embedded-graphics/reverse_dependencies) on crates.io so might be //! missing some unpublished entries. Please [open an //! issue](https://github.com/jamwaffles/embedded-graphics/issues/new) if there's a display driver //! that should be added to this list. //! //! * [ili9341](https://crates.io/crates/ili9341): A platform agnostic driver to interface with the ILI9341 (and ILI9340C) TFT LCD display //! * [ls010b7dh01](https://crates.io/crates/ls010b7dh01): A platform agnostic driver for the LS010B7DH01 memory LCD display //! * [sh1106](https://crates.io/crates/sh1106): I2C driver for the SH1106 OLED display //! * [ssd1306](https://crates.io/crates/ssd1306): I2C and SPI (4 wire) driver for the SSD1306 OLED display //! * [ssd1322](https://crates.io/crates/ssd1322): Pure Rust driver for the SSD1322 OLED display chip //! * [ssd1331](https://crates.io/crates/ssd1331): SPI (4 wire) driver for the SSD1331 OLED display //! * [ssd1351](https://crates.io/crates/ssd1351): SSD1351 driver //! * [ssd1675](https://crates.io/crates/ssd1675): Rust driver for the Solomon Systech SSD1675 e-Paper display (EPD) controller //! * [st7735-lcd](https://crates.io/crates/st7735-lcd): Rust library for displays using the ST7735 driver //! //! # Simulator //! //! Embedded graphics comes with a [simulator]! //! //! ![It can display all sorts of embedded-graphics test code.](https://raw.githubusercontent.com/jamwaffles/embedded-graphics/master/assets/simulator-demo.png) //! //! Take a look at the [simulator examples] to see what //! embedded_graphics can do, and how it might look on a display. You can run the examples like //! this: //! //! ```bash //! git clone https://github.com/jamwaffles/embedded-graphics.git //! cd embedded-graphics //! //! cargo run -p embedded-graphics-simulator --example hello //! ``` //! //! [simulator]: https://github.com/jamwaffles/embedded-graphics/tree/c4f74c12dae9f0a0193fa48192f905a002bf8c9d/simulator //! [simulator examples]: https://github.com/jamwaffles/embedded-graphics/tree/c4f74c12dae9f0a0193fa48192f905a002bf8c9d/simulator/examples //! //! # Crate features //! //! Add these to your `Cargo.toml` to turn on extra bits of functionality. //! //! * `nalgebra_support` - use the [Nalgebra](https://crates.io/crates/nalgebra) crate with `no_std` //! support to use as the `Coord` type. This should allow you to use most Nalgebra methods on //! objects rendered by embedded_graphics. //! * `bmp` - use the [TinyBMP](https://crates.io/crates/tinybmp) crate for BMP image support. //! * `tga` - use the [TinyTGA](https://crates.io/crates/tinytga) crate for TGA image support. //! //! # Examples //! //! ## Draw a circle and some text //! //! This example uses the [`Circle`] primitive and the [`Font6x8`] font to draw a filled circle and some text over it on the screen. //! //! ```rust //! use embedded_graphics::prelude::*; //! use embedded_graphics::primitives::Circle; //! use embedded_graphics::fonts::Font6x8; //! # use embedded_graphics::mock_display::Display; //! # let mut display = Display::default(); //! //! let c = Circle::new(Coord::new(20, 20), 8).fill(Some(1u8)); //! let t = Font6x8::render_str("Hello Rust!").fill(Some(20u8)).translate(Coord::new(20, 16)); //! //! display.draw(c); //! display.draw(t); //! ``` //! //! ## Draw a circle and some text //! //! To make life even easier, some handy [macros](#macros) are provided for drawing styled //! primitives and text. Converting the example above, we get this: //! //! ```rust //! use embedded_graphics::prelude::*; //! use embedded_graphics::{text_6x8, egcircle, icoord}; //! # use embedded_graphics::mock_display::Display; //! # let mut display = Display::default(); //! //! let c = egcircle!((20, 20), 8, fill = Some(1u8)); //! let t = text_6x8!("Hello Rust!", fill = Some(20u8)).translate(icoord!(20, 16)); //! //! display.draw(c); //! display.draw(t); //! ``` //! //! ## Chaining //! //! Items can be chained to build more complex graphics objects. //! //! ```rust //! use embedded_graphics::prelude::*; //! use embedded_graphics::{text_6x8, egcircle, icoord, egrectangle}; //! # use embedded_graphics::mock_display::Display; //! //! fn build_thing(text: &'static str) -> impl Iterator<Item = Pixel<u8>> { //! egrectangle!((0, 0), (40, 40)).into_iter() //! .chain(egcircle!((20, 20), 8, fill = Some(1u8))) //! .chain(text_6x8!(text, fill = Some(20u8)).translate(icoord!(20, 16))) //! } //! //! fn main() { //! # let mut display = Display::default(); //! display.draw(build_thing("Hello Rust!")); //! } //! ``` //! //! # Implementing `embedded_graphics` in a driver //! //! To add support for embedded_graphics to a display driver, [`Drawing`] (and if possible //! [`SizedDrawing`]) should be implemented. This allows all embedded_graphics objects to be //! rendered by the display. See their [respective][`Drawing`] [docs][`SizedDrawing`] for //! implementation details. //! //! [`Circle`]: ./primitives/circle/struct.Circle.html //! [`Font6x8`]: ./fonts/type.Font6x8.html //! [`Drawing`]: ./trait.Drawing.html //! [`SizedDrawing`]: ./trait.SizedDrawing.html #![doc( html_logo_url = "https://raw.githubusercontent.com/jamwaffles/embedded-graphics/01d2ea6e7053f9f79cab19d0c193a00dbdaea321/assets/logo.png" )] #![no_std] #![deny(missing_docs)] #![deny(missing_debug_implementations)] #![deny(missing_copy_implementations)] #![deny(trivial_casts)] #![deny(trivial_numeric_casts)] #![deny(unsafe_code)] #![deny(unstable_features)] #![deny(unused_import_braces)] #![deny(unused_qualifications)] #[cfg(feature = "nalgebra_support")] extern crate nalgebra; pub mod coord; pub mod drawable; pub mod fonts; pub mod image; #[doc(hidden)] pub mod mock_display; pub mod pixelcolor; pub mod prelude; pub mod primitives; pub mod style; pub mod transform; pub mod unsignedcoord; use crate::drawable::Dimensions; use crate::pixelcolor::PixelColor; /// To use this crate in a driver, `Drawing` must be implemented. This allows display drivers to /// support all embedded_graphics objects through the `draw()` method. /// /// Note that you should also implement [`SizedDrawing`] if the display supports partial updates. /// /// Here's an example for an imaginary display that has a 64x64px framebuffer of 8 bit values that /// communicates over a (simplified) SPI interface: /// /// ```rust /// use embedded_graphics::prelude::*; /// use embedded_graphics::Drawing; /// use embedded_graphics::egcircle; /// /// # struct SPI1; /// # /// # impl SPI1 { /// # pub fn send_bytes(&self, buf: &[u8]) -> Result<(), ()> { /// # Ok(()) /// # } /// # } /// # /// /// A fake display 64px x 64px where each pixel is stored as a single `u8` /// struct ExampleDisplay { /// framebuffer: [u8; 64 * 64], /// iface: SPI1, /// } /// /// impl ExampleDisplay { /// /// Send buffer to the display /// pub fn flush(&self) -> Result<(), ()> { /// self.iface.send_bytes(&self.framebuffer) /// } /// } /// /// impl Drawing<u8> for ExampleDisplay { /// /// Draw any item that can produce an iterator of `Pixel`s that have a colour defined as a `u8` /// fn draw<T>(&mut self, item: T) /// where /// T: IntoIterator<Item = Pixel<u8>>, /// { /// for Pixel(coord, color) in item { /// // Place an (x, y) pixel at the right index in the framebuffer /// let index = coord[0] + (coord[1] * 64); /// /// self.framebuffer[index as usize] = color; /// } /// } /// } /// /// fn main() { /// let mut display = ExampleDisplay { /// framebuffer: [0; 4096], /// iface: SPI1 /// }; /// /// // Draw a circle centered around `(32, 32)` with a radius of `10` and a stroke of `1u8` /// display.draw(egcircle!((32, 32), 10, stroke = Some(1u8))); /// /// // Update the display /// display.flush().expect("Failed to send data to display"); /// } /// ``` /// /// [`SizedDrawing`]: ./trait.SizedDrawing.html pub trait Drawing<C> where C: PixelColor + Clone, { /// Draw an object from an iterator over its pixels fn draw<T>(&mut self, item: T) where T: IntoIterator<Item = drawable::Pixel<C>>; } /// Very similar to the [`Drawing`] trait, but accepts drawable objects which have a known size /// /// If the device used supports partial updates where only a given range of pixels is updated, you /// should also implement `SizedDrawing` alongside [`Drawing`]. This trait is similar to `Drawing`, /// but has a bound on [`Dimensions`](./drawable/trait.Dimensions.html) which provides methods for /// getting the bounding box of the passed item to draw. /// /// The example below shows a contrived implementation for a display that doesn't require a /// framebuffer. It sends pixels one by one to over the SPI bus which isn't very efficient, but that /// could be fixed by using a fixed length chunked buffering scheme. /// /// ```rust /// use embedded_graphics::egcircle; /// use embedded_graphics::prelude::*; /// use embedded_graphics::SizedDrawing; /// /// # struct SPI1; /// # /// # impl SPI1 { /// # pub fn send_bytes(&self, buf: &[u8]) -> Result<(), ()> { /// # Ok(()) /// # } /// # /// # pub fn send_command(&self, cmd: &[u8]) -> Result<(), ()> { /// # Ok(()) /// # } /// # } /// # /// /// A fake display 64px x 64px where each pixel is stored as a single `u8` /// struct ExampleBufferlessDisplay { /// iface: SPI1, /// } /// /// impl ExampleBufferlessDisplay { /// /// Set draw area /// pub fn set_draw_area(&self, x1: i32, y1: i32, x2: i32, y2: i32) -> Result<(), ()> { /// // Some magic incantation to set a sub-area of the display to update /// self.iface /// .send_command(&[0xff, x1 as u8, y1 as u8, x2 as u8, y2 as u8]) /// } /// } /// /// impl SizedDrawing<u8> for ExampleBufferlessDisplay { /// fn draw_sized<T>(&mut self, item: T) /// where /// T: IntoIterator<Item = Pixel<u8>> + Dimensions, /// { /// // Get bounding box `Coord`s as `(u32, u32)` /// let tl = item.top_left(); /// let br = item.bottom_right(); /// /// // Set a sub-area of the display to update /// self.set_draw_area(tl[0], tl[1], br[0], br[1]); /// /// // Send updated pixel one at a time. Could use a chunked buffer to make this more efficient. /// // `coord` isn't used as the update area is the same as the item's bounding box which /// // wraps the bytes automatically /// for Pixel(_coord, color) in item { /// self.iface.send_bytes(&[color]); /// } /// } /// } /// /// fn main() { /// let mut display = ExampleBufferlessDisplay { /// iface: SPI1 /// }; /// /// // Draw a circle centered around `(32, 32)` with a radius of `10` and a stroke of `1u8` /// display.draw_sized(egcircle!((32, 32), 10, stroke = Some(1u8))); /// /// // No `flush()` is required as `draw_sized()` sends the bytes directly /// } /// ``` /// /// [`Drawing`]: ./trait.Drawing.html /// [`SizedDrawing`]: ./trait.SizedDrawing.html /// ``` pub trait SizedDrawing<C> where C: PixelColor + Clone, { /// Draw an object from an iterator over its pixels fn draw_sized<T>(&mut self, item: T) where T: IntoIterator<Item = drawable::Pixel<C>> + Dimensions; }