Files
aligned
app
arrayvec
as_slice
bare_metal
byteorder
cfg_if
cortex_m
cortex_m_rt
cstr_core
cty
druid
druid_shell
embedded_graphics
embedded_hal
generic_array
hash32
heapless
introsort
kurbo
libchip8
libm
log
memchr
mynewt
nb
num_traits
piet
piet_common
piet_embedded_graphics
r0
st7735_lcd
stable_deref_trait
typenum
unicode_segmentation
vcell
void
volatile_register
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
//! Affine transforms.

use libm; ////
use core::ops::{Mul, MulAssign}; ////
////use std::ops::{Mul, MulAssign};

use crate::{Point, Rect, Vec2};

/// A 2D affine transform.
#[derive(Clone, Copy, Debug)]
pub struct Affine(pub [f64; 6]); ////
////pub struct Affine([f64; 6]);

impl Affine {
    /// A transform that is flipped on the y-axis. Useful for converting between
    /// y-up and y-down spaces.
    pub const FLIP_Y: Affine = Affine::new([1.0, 0., 0., -1.0, 0., 0.]);

    /// A transform that is flipped on the x-axis.
    pub const FLIP_X: Affine = Affine::new([-1.0, 0., 0., 1.0, 0., 0.]);

    /// Construct an affine transform from coefficients.
    ///
    /// If the coefficients are `(a, b, c, d, e, f)`, then the resulting
    /// transformation represents this augmented matrix:
    ///
    /// ```text
    /// | a c e |
    /// | b d f |
    /// | 0 0 1 |
    /// ```
    ///
    /// Note that this convention is transposed from PostScript and
    /// Direct2D, but is consistent with the
    /// [Wikipedia](https://en.wikipedia.org/wiki/Affine_transformation)
    /// formulation of affine transformation as augmented matrix. The
    /// idea is that `(A * B) * v == A * (B * v)`, where `*` is the
    /// [`Mul`](https://doc.rust-lang.org/std/ops/trait.Mul.html) trait.
    #[inline]
    pub const fn new(c: [f64; 6]) -> Affine {
        Affine(c)
    }

    /// An affine transform representing uniform scaling.
    #[inline]
    pub const fn scale(s: f64) -> Affine {
        Affine([s, 0.0, 0.0, s, 0.0, 0.0])
    }

    /// An affine transform representing rotation.
    ///
    /// The convention for rotation is that a positive angle rotates a
    /// positive X direction into positive Y. Thus, in a Y-down coordinate
    /// system (as is common for graphics), it is a clockwise rotation, and
    /// in Y-up (traditional for math), it is anti-clockwise.
    ///
    /// The angle, `th`, is expressed in radians.
    #[inline]
    pub fn rotate(th: f64) -> Affine {
        let s = libm::sin(th);
        ////let s = th.sin();
        let c = libm::cos(th);
        ////let c = th.cos();
        Affine([c, s, -s, c, 0.0, 0.0])
    }

    /// An affine transform representing translation.
    #[inline]
    pub fn translate<V: Into<Vec2>>(p: V) -> Affine {
        let p = p.into();
        Affine([1.0, 0.0, 0.0, 1.0, p.x, p.y])
    }

    /// Get the coefficients of the transform.
    #[inline]
    pub fn as_coeffs(self) -> [f64; 6] {
        self.0
    }

    /// Compute the determinant of this transform.
    pub fn determinant(self) -> f64 {
        self.0[0] * self.0[3] - self.0[1] * self.0[2]
    }

    /// Compute the inverse transform.
    ///
    /// Produces NaN values when the determinant is zero.
    pub fn inverse(self) -> Affine {
        let inv_det = self.determinant().recip();
        Affine([
            inv_det * self.0[3],
            -inv_det * self.0[1],
            -inv_det * self.0[2],
            inv_det * self.0[0],
            inv_det * (self.0[2] * self.0[5] - self.0[3] * self.0[4]),
            inv_det * (self.0[1] * self.0[4] - self.0[0] * self.0[5]),
        ])
    }

    /// Compute the bounding box of a transformed rectangle.
    ///
    /// Returns the minimal `Rect` that encloses the given `Rect` after affine transformation.
    /// If the transform is axis-aligned, then this bounding box is "tight", in other words the
    /// returned `Rect` is the transformed rectangle.
    ///
    /// The returned rectangle always has non-negative width and height.
    pub fn transform_rect_bbox(self, rect: Rect) -> Rect {
        let p00 = self * Point::new(rect.x0, rect.y0);
        let p01 = self * Point::new(rect.x0, rect.y1);
        let p10 = self * Point::new(rect.x1, rect.y0);
        let p11 = self * Point::new(rect.x1, rect.y1);
        Rect::from_points(p00, p01).union(Rect::from_points(p10, p11))
    }
}

impl Default for Affine {
    #[inline]
    fn default() -> Affine {
        Affine::scale(1.0)
    }
}

impl Mul<Point> for Affine {
    type Output = Point;

    #[inline]
    fn mul(self, other: Point) -> Point {
        Point::new(
            self.0[0] * other.x + self.0[2] * other.y + self.0[4],
            self.0[1] * other.x + self.0[3] * other.y + self.0[5],
        )
    }
}

impl Mul for Affine {
    type Output = Affine;

    #[inline]
    fn mul(self, other: Affine) -> Affine {
        Affine([
            self.0[0] * other.0[0] + self.0[2] * other.0[1],
            self.0[1] * other.0[0] + self.0[3] * other.0[1],
            self.0[0] * other.0[2] + self.0[2] * other.0[3],
            self.0[1] * other.0[2] + self.0[3] * other.0[3],
            self.0[0] * other.0[4] + self.0[2] * other.0[5] + self.0[4],
            self.0[1] * other.0[4] + self.0[3] * other.0[5] + self.0[5],
        ])
    }
}

impl MulAssign for Affine {
    #[inline]
    fn mul_assign(&mut self, other: Affine) {
        *self = self.mul(other);
    }
}

impl Mul<Affine> for f64 {
    type Output = Affine;

    #[inline]
    fn mul(self, other: Affine) -> Affine {
        Affine([
            self * other.0[0],
            self * other.0[1],
            self * other.0[2],
            self * other.0[3],
            self * other.0[4],
            self * other.0[5],
        ])
    }
}

// Conversions to and from mint
#[cfg(feature = "mint")]
impl From<Affine> for mint::ColumnMatrix2x3<f64> {
    #[inline]
    fn from(a: Affine) -> mint::ColumnMatrix2x3<f64> {
        mint::ColumnMatrix2x3 {
            x: mint::Vector2 {
                x: a.0[0],
                y: a.0[1],
            },
            y: mint::Vector2 {
                x: a.0[2],
                y: a.0[3],
            },
            z: mint::Vector2 {
                x: a.0[4],
                y: a.0[5],
            },
        }
    }
}

#[cfg(feature = "mint")]
impl From<mint::ColumnMatrix2x3<f64>> for Affine {
    #[inline]
    fn from(m: mint::ColumnMatrix2x3<f64>) -> Affine {
        Affine([m.x.x, m.x.y, m.y.x, m.y.y, m.z.x, m.z.y])
    }
}

#[cfg(test)]
mod tests {
    use crate::{Affine, Point};
    use core::f64::consts::PI; ////
    ////use std::f64::consts::PI;

    fn assert_near(p0: Point, p1: Point) {
        assert!((p1 - p0).hypot() < 1e-9, "{:?} != {:?}", p0, p1);
    }

    #[test]
    fn affine_basic() {
        let p = Point::new(3.0, 4.0);

        assert_near(Affine::default() * p, p);
        assert_near(Affine::scale(2.0) * p, Point::new(6.0, 8.0));
        assert_near(Affine::rotate(0.0) * p, p);
        assert_near(Affine::rotate(PI / 2.0) * p, Point::new(-4.0, 3.0));
        assert_near(Affine::translate((5.0, 6.0)) * p, Point::new(8.0, 10.0));
    }

    #[test]
    fn affine_mul() {
        let a1 = Affine::new([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
        let a2 = Affine::new([0.1, 1.2, 2.3, 3.4, 4.5, 5.6]);

        let px = Point::new(1.0, 0.0);
        let py = Point::new(0.0, 1.0);
        let pxy = Point::new(1.0, 1.0);
        assert_near(a1 * (a2 * px), (a1 * a2) * px);
        assert_near(a1 * (a2 * py), (a1 * a2) * py);
        assert_near(a1 * (a2 * pxy), (a1 * a2) * pxy);
    }

    #[test]
    fn affine_inv() {
        let a = Affine::new([0.1, 1.2, 2.3, 3.4, 4.5, 5.6]);
        let a_inv = a.inverse();

        let px = Point::new(1.0, 0.0);
        let py = Point::new(0.0, 1.0);
        let pxy = Point::new(1.0, 1.0);
        assert_near(a * (a_inv * px), px);
        assert_near(a * (a_inv * py), py);
        assert_near(a * (a_inv * pxy), pxy);
        assert_near(a_inv * (a * px), px);
        assert_near(a_inv * (a * py), py);
        assert_near(a_inv * (a * pxy), pxy);
    }
}