1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
// Copyright 2019 The xi-editor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Traits for handling value types. /* use std::rc::Rc; use std::sync::Arc; */ pub use druid_derive::Data; /// A trait used to represent value types. /// /// These should be cheap to compare and cheap to clone. /// /// See <https://sinusoid.es/lager/model.html#id2> for a well-written /// explanation of value types (albeit within a C++ context). /// /// ## Derive macro /// /// In general, you can use `derive` to generate a `Data` impl for your types. /// /// ``` /// # use std::sync::Arc; /// # use druid::Data; /// #[derive(Clone, Data)] /// enum Foo { /// Case1(i32, f32), /// Case2 { a: String, b: Arc<i32> } /// } /// ``` /// /// ### Derive macro attributes /// /// There are a number of field attributes available for use with `derive(Data)`. /// /// - **`#[druid(ignore)]`** /// /// Skip this field when computing `same`ness. /// /// If the type you are implementing `Data` on contains some fields that are /// not relevant to the `Data` impl, you can ignore them with this attribute. /// /// - **`#[druid(same_fn = "path")]`** /// /// Use a specific function to compute `same`ness. /// /// By default, derived implementations of `Data` just call [`Data::same`] /// recursively on each field. With this attribute, you can specify a /// custom function that will be used instead. /// /// This function must have a signature in the form, `fn<T>(&T, &T) -> bool`, /// where `T` is the type of the field. /// /// ### Example: /// /// ``` /// # use std::path::PathBuf; /// # use std::time::Instant; /// # use druid::Data; /// #[derive(Clone, Data)] /// struct PathEntry { /// // There's no Data impl for PathBuf, but no problem /// #[druid(same_fn = "PartialEq::eq")] /// path: PathBuf, /// priority: usize, /// // This field is not part of our data model. /// #[druid(ignore)] /// last_read: Instant, /// } /// ``` /// /// ## C-style enums /// /// In the case of a "c-style" enum (one that only contains unit variants, /// that is where no variant has fields), the implementation that is generated /// checks for equality. Therefore, such types must also implement `PartialEq`. /// /// [`Data::same`]: trait.Data.html#tymethod.same pub trait Data: Clone { /// Determine whether two values are the same. /// /// This is intended to always be a fast operation. If it returns /// `true`, the two values *must* be equal, but two equal values /// need not be considered the same here, as will often be the /// case when two copies are separately allocated. /// /// Note that "equal" above has a slightly different meaning than /// `PartialEq`, for example two floating point NaN values should /// be considered equal when they have the same bit representation. fn same(&self, other: &Self) -> bool; } /// An impl of `Data` suitable for simple types. /// /// The `same` method is implemented with equality, so the type should /// implement `Eq` at least. macro_rules! impl_data_simple { ($t:ty) => { impl Data for $t { fn same(&self, other: &Self) -> bool { self == other } } }; } impl_data_simple!(i8); impl_data_simple!(i16); impl_data_simple!(i32); impl_data_simple!(i64); impl_data_simple!(isize); impl_data_simple!(u8); impl_data_simple!(u16); impl_data_simple!(u32); impl_data_simple!(u64); impl_data_simple!(usize); impl_data_simple!(char); impl_data_simple!(bool); ////impl_data_simple!(String); impl Data for f32 { fn same(&self, other: &Self) -> bool { self.to_bits() == other.to_bits() } } impl Data for f64 { fn same(&self, other: &Self) -> bool { self.to_bits() == other.to_bits() } } /* //// impl<T: ?Sized> Data for Arc<T> { fn same(&self, other: &Self) -> bool { Arc::ptr_eq(self, other) } } impl<T: ?Sized> Data for Rc<T> { fn same(&self, other: &Self) -> bool { Rc::ptr_eq(self, other) } } */ //// impl<T: Data> Data for Option<T> { fn same(&self, other: &Self) -> bool { match (self, other) { (Some(a), Some(b)) => a.same(b), (None, None) => true, _ => false, } } } impl<T: Data> Data for &T { fn same(&self, other: &Self) -> bool { Data::same(*self, *other) } } impl<T: Data, U: Data> Data for Result<T, U> { fn same(&self, other: &Self) -> bool { match (self, other) { (Ok(a), Ok(b)) => a.same(b), (Err(a), Err(b)) => a.same(b), _ => false, } } } impl Data for () { fn same(&self, _other: &Self) -> bool { true } } impl<T0: Data> Data for (T0,) { fn same(&self, other: &Self) -> bool { self.0.same(&other.0) } } impl<T0: Data, T1: Data> Data for (T0, T1) { fn same(&self, other: &Self) -> bool { self.0.same(&other.0) && self.1.same(&other.1) } } impl<T0: Data, T1: Data, T2: Data> Data for (T0, T1, T2) { fn same(&self, other: &Self) -> bool { self.0.same(&other.0) && self.1.same(&other.1) && self.2.same(&other.2) } } impl<T0: Data, T1: Data, T2: Data, T3: Data> Data for (T0, T1, T2, T3) { fn same(&self, other: &Self) -> bool { self.0.same(&other.0) && self.1.same(&other.1) && self.2.same(&other.2) && self.3.same(&other.3) } } impl<T0: Data, T1: Data, T2: Data, T3: Data, T4: Data> Data for (T0, T1, T2, T3, T4) { fn same(&self, other: &Self) -> bool { self.0.same(&other.0) && self.1.same(&other.1) && self.2.same(&other.2) && self.3.same(&other.3) && self.4.same(&other.4) } } impl<T0: Data, T1: Data, T2: Data, T3: Data, T4: Data, T5: Data> Data for (T0, T1, T2, T3, T4, T5) { fn same(&self, other: &Self) -> bool { self.0.same(&other.0) && self.1.same(&other.1) && self.2.same(&other.2) && self.3.same(&other.3) && self.4.same(&other.4) && self.5.same(&other.5) } }