Struct heapless::binary_heap::BinaryHeap [−][src]
pub struct BinaryHeap<T, N, KIND>(_)
where
T: Ord,
N: ArrayLength<T>,
KIND: Kind;
Expand description
A priority queue implemented with a binary heap.
This can be either a min-heap or a max-heap.
It is a logic error for an item to be modified in such a way that the item’s ordering relative
to any other item, as determined by the Ord
trait, changes while it is in the heap. This is
normally only possible through Cell
, RefCell
, global state, I/O, or unsafe code.
use heapless::binary_heap::{BinaryHeap, Max}; use heapless::consts::*; let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); // We can use peek to look at the next item in the heap. In this case, // there's no items in there yet so we get None. assert_eq!(heap.peek(), None); // Let's add some scores... heap.push(1).unwrap(); heap.push(5).unwrap(); heap.push(2).unwrap(); // Now peek shows the most important item in the heap. assert_eq!(heap.peek(), Some(&5)); // We can check the length of a heap. assert_eq!(heap.len(), 3); // We can iterate over the items in the heap, although they are returned in // a random order. for x in &heap { println!("{}", x); } // If we instead pop these scores, they should come back in order. assert_eq!(heap.pop(), Some(5)); assert_eq!(heap.pop(), Some(2)); assert_eq!(heap.pop(), Some(1)); assert_eq!(heap.pop(), None); // We can clear the heap of any remaining items. heap.clear(); // The heap should now be empty. assert!(heap.is_empty())
Implementations
Creates an empty BinaryHeap as a $K-heap.
use heapless::binary_heap::{BinaryHeap, Max}; use heapless::consts::*; // allocate the binary heap on the stack let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); heap.push(4).unwrap(); // allocate the binary heap in a static variable static mut HEAP: BinaryHeap<i32, U8, Max> = BinaryHeap(heapless::i::BinaryHeap::new());
Drops all items from the binary heap.
use heapless::binary_heap::{BinaryHeap, Max}; use heapless::consts::*; let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); heap.push(1).unwrap(); heap.push(3).unwrap(); assert!(!heap.is_empty()); heap.clear(); assert!(heap.is_empty());
Returns the length of the binary heap.
use heapless::binary_heap::{BinaryHeap, Max}; use heapless::consts::*; let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); heap.push(1).unwrap(); heap.push(3).unwrap(); assert_eq!(heap.len(), 2);
Checks if the binary heap is empty.
use heapless::binary_heap::{BinaryHeap, Max}; use heapless::consts::*; let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); assert!(heap.is_empty()); heap.push(3).unwrap(); heap.push(5).unwrap(); heap.push(1).unwrap(); assert!(!heap.is_empty());
Returns an iterator visiting all values in the underlying vector, in arbitrary order.
use heapless::binary_heap::{BinaryHeap, Max}; use heapless::consts::*; let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); heap.push(1).unwrap(); heap.push(2).unwrap(); heap.push(3).unwrap(); heap.push(4).unwrap(); // Print 1, 2, 3, 4 in arbitrary order for x in heap.iter() { println!("{}", x); }
Returns a mutable iterator visiting all values in the underlying vector, in arbitrary order.
WARNING Mutating the items in the binary heap can leave the heap in an inconsistent state.
Returns the top (greatest if max-heap, smallest if min-heap) item in the binary heap, or None if it is empty.
use heapless::binary_heap::{BinaryHeap, Max}; use heapless::consts::*; let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); assert_eq!(heap.peek(), None); heap.push(1).unwrap(); heap.push(5).unwrap(); heap.push(2).unwrap(); assert_eq!(heap.peek(), Some(&5));
Returns a mutable reference to the greatest item in the binary heap, or
None
if it is empty.
Note: If the PeekMut
value is leaked, the heap may be in an
inconsistent state.
Examples
Basic usage:
use heapless::binary_heap::{BinaryHeap, Max}; use heapless::consts::*; let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); assert!(heap.peek_mut().is_none()); heap.push(1); heap.push(5); heap.push(2); { let mut val = heap.peek_mut().unwrap(); *val = 0; } assert_eq!(heap.peek(), Some(&2));
Removes the top (greatest if max-heap, smallest if min-heap) item from the binary heap and returns it, or None if it is empty.
use heapless::binary_heap::{BinaryHeap, Max}; use heapless::consts::*; let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); heap.push(1).unwrap(); heap.push(3).unwrap(); assert_eq!(heap.pop(), Some(3)); assert_eq!(heap.pop(), Some(1)); assert_eq!(heap.pop(), None);
Removes the top (greatest if max-heap, smallest if min-heap) item from the binary heap and returns it, without checking if the binary heap is empty.
Pushes an item onto the binary heap.
use heapless::binary_heap::{BinaryHeap, Max}; use heapless::consts::*; let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); heap.push(3).unwrap(); heap.push(5).unwrap(); heap.push(1).unwrap(); assert_eq!(heap.len(), 3); assert_eq!(heap.peek(), Some(&5));
Pushes an item onto the binary heap without first checking if it’s full.
Trait Implementations
Performs copy-assignment from source
. Read more
impl<'a, T, N, K> IntoIterator for &'a BinaryHeap<T, N, K> where
N: ArrayLength<T>,
K: Kind,
T: Ord,
impl<'a, T, N, K> IntoIterator for &'a BinaryHeap<T, N, K> where
N: ArrayLength<T>,
K: Kind,
T: Ord,
Auto Trait Implementations
impl<T, N, KIND> Send for BinaryHeap<T, N, KIND> where
KIND: Send,
T: Send,
impl<T, N, KIND> Sync for BinaryHeap<T, N, KIND> where
KIND: Sync,
T: Sync,
impl<T, N, KIND> Unpin for BinaryHeap<T, N, KIND> where
KIND: Unpin,
<N as ArrayLength<T>>::ArrayType: Unpin,
Blanket Implementations
pub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
pub fn from(t: T) -> T
pub fn from(t: T) -> T
Performs the conversion.
pub fn into(self) -> U
pub fn into(self) -> U
Performs the conversion.