1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
//! `Pool` as a global singleton

use core::{
    any::TypeId,
    cmp, fmt,
    hash::{Hash, Hasher},
    marker::PhantomData,
    mem::{self, MaybeUninit},
    ops::{Deref, DerefMut},
    ptr,
};

use super::{Init, Node, Uninit};

/// Instantiates a pool as a global singleton
// NOTE(any(test)) makes testing easier (no need to enable Cargo features for testing)
#[cfg(any(
    armv7a,
    armv7r,
    armv7m,
    armv8m_main,
    all(target_arch = "x86_64", feature = "x86-sync-pool"),
    test
))]
#[macro_export]
macro_rules! pool {
    ($(#[$($attr:tt)*])* $ident:ident: $ty:ty) => {
        pub struct $ident;

        impl $crate::pool::singleton::Pool for $ident {
            type Data = $ty;

            fn ptr() -> &'static $crate::pool::Pool<$ty> {
                $(#[$($attr)*])*
                static $ident: $crate::pool::Pool<$ty> = $crate::pool::Pool::new();

                &$ident
            }
        }
    };
}

/// A global singleton memory pool
pub trait Pool {
    /// The type of data that can be allocated on this pool
    type Data: 'static;

    #[doc(hidden)]
    fn ptr() -> &'static super::Pool<Self::Data>;

    /// Claims a memory block from the pool
    ///
    /// Returns `None` when the pool is observed as exhausted
    ///
    /// *NOTE:* This method does *not* have bounded execution time; i.e. it contains a CAS loop
    fn alloc() -> Option<Box<Self, Uninit>>
    where
        Self: Sized,
    {
        Self::ptr().alloc().map(|inner| Box {
            _pool: PhantomData,
            inner,
        })
    }

    /// Increases the capacity of the pool
    ///
    /// This method might *not* fully utilize the given memory block due to alignment requirements
    ///
    /// This method returns the number of *new* blocks that can be allocated.
    fn grow(memory: &'static mut [u8]) -> usize {
        Self::ptr().grow(memory)
    }

    /// Increases the capacity of the pool
    ///
    /// Unlike [`Pool.grow`](trait.Pool.html#method.grow_exact) this method fully utilizes the given
    /// memory block
    fn grow_exact<A>(memory: &'static mut MaybeUninit<A>) -> usize
    where
        A: AsMut<[Node<Self::Data>]>,
    {
        Self::ptr().grow_exact(memory)
    }
}

/// A memory block that belongs to the global memory pool, `POOL`
pub struct Box<POOL, STATE = Init>
where
    POOL: Pool,
    STATE: 'static,
{
    _pool: PhantomData<POOL>,
    inner: super::Box<POOL::Data, STATE>,
}

impl<P> Box<P, Uninit>
where
    P: Pool,
{
    /// Initializes this memory block
    pub fn init(self, val: P::Data) -> Box<P, Init> {
        let node = self.inner.node;

        mem::forget(self);

        unsafe {
            ptr::write(node.as_ref().data.get(), val);
        }

        Box {
            inner: super::Box {
                node,
                _state: PhantomData,
            },
            _pool: PhantomData,
        }
    }
}

impl<P> Box<P, Uninit>
where
    P: Pool,
    P::Data: AsRef<[u8]>,
{
    #[deprecated(
        since = "0.7.3",
        note = "This can access uninitialized memory, use `init(..)` instead (https://github.com/japaric/heapless/issues/212)"
    )]
    /// (DO NOT USE, SEE DEPRECATION) Freezes the contents of this memory block
    ///
    /// See [rust-lang/rust#58363](https://github.com/rust-lang/rust/pull/58363) for details.
    pub fn freeze(self) -> Box<P, Init> {
        let node = self.inner.node;

        mem::forget(self);

        // it seems we can get away with not calling `ptr::freeze` here and not run into UB
        // because we are dealing with static memory and using fences
        // let p: *const u8 = (*node.as_ref().data.get()).as_slice().as_ptr();
        // ptr::freeze(p as *mut u8);

        Box {
            inner: super::Box {
                node,
                _state: PhantomData,
            },
            _pool: PhantomData,
        }
    }
}

impl<P> Box<P, Init>
where
    P: Pool,
{
    /// Forgets the contents of this memory block without running its destructor.
    ///
    /// Note that this this does not return the memory block to the pool. The
    /// block can be reused, or returned to the pool by dropping it.
    pub fn forget(self) -> Box<P, Uninit> {
        let node = self.inner.node;

        mem::forget(self);
        mem::forget(unsafe { ptr::read(node.as_ref().data.get()) });

        Box {
            inner: super::Box {
                node,
                _state: PhantomData,
            },
            _pool: PhantomData,
        }
    }
}

impl<P> Deref for Box<P>
where
    P: Pool,
{
    type Target = P::Data;

    fn deref(&self) -> &P::Data {
        self.inner.deref()
    }
}

impl<P> DerefMut for Box<P>
where
    P: Pool,
{
    fn deref_mut(&mut self) -> &mut P::Data {
        self.inner.deref_mut()
    }
}

unsafe impl<P: Pool> stable_deref_trait::StableDeref for Box<P> {}

impl<P> fmt::Debug for Box<P>
where
    P: Pool,
    P::Data: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        <P::Data as fmt::Debug>::fmt(self, f)
    }
}

impl<P> fmt::Display for Box<P>
where
    P: Pool,
    P::Data: fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        <P::Data as fmt::Display>::fmt(self, f)
    }
}

impl<P, S> Drop for Box<P, S>
where
    P: Pool,
    S: 'static,
{
    fn drop(&mut self) {
        if TypeId::of::<S>() == TypeId::of::<Init>() {
            unsafe {
                ptr::drop_in_place(self.inner.node.as_ref().data.get());
            }
        }

        if mem::size_of::<P::Data>() != 0 {
            P::ptr().stack.push(self.inner.node)
        }
    }
}

unsafe impl<P, S> Send for Box<P, S>
where
    P: Pool,
    P::Data: Send,
{
}

unsafe impl<P, S> Sync for Box<P, S>
where
    P: Pool,
    P::Data: Sync,
{
}

impl<P, T> AsRef<[T]> for Box<P>
where
    P: Pool,
    P::Data: AsRef<[T]>,
{
    fn as_ref(&self) -> &[T] {
        self.deref().as_ref()
    }
}

impl<P, T> AsMut<[T]> for Box<P>
where
    P: Pool,
    P::Data: AsMut<[T]>,
{
    fn as_mut(&mut self) -> &mut [T] {
        self.deref_mut().as_mut()
    }
}

impl<P> PartialEq for Box<P>
where
    P: Pool,
    P::Data: PartialEq,
{
    fn eq(&self, rhs: &Box<P>) -> bool {
        <P::Data as PartialEq>::eq(self, rhs)
    }
}

impl<P> Eq for Box<P>
where
    P: Pool,
    P::Data: Eq,
{
}

impl<P> PartialOrd for Box<P>
where
    P: Pool,
    P::Data: PartialOrd,
{
    fn partial_cmp(&self, rhs: &Box<P>) -> Option<cmp::Ordering> {
        <P::Data as PartialOrd>::partial_cmp(self, rhs)
    }
}

impl<P> Ord for Box<P>
where
    P: Pool,
    P::Data: Ord,
{
    fn cmp(&self, rhs: &Box<P>) -> cmp::Ordering {
        <P::Data as Ord>::cmp(self, rhs)
    }
}

impl<P> Hash for Box<P>
where
    P: Pool,
    P::Data: Hash,
{
    fn hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        <P::Data as Hash>::hash(self, state)
    }
}

#[cfg(test)]
mod tests {
    use core::{
        mem,
        sync::atomic::{AtomicUsize, Ordering},
    };

    use super::{super::Node, Pool};

    #[test]
    fn sanity() {
        const SZ: usize = 2 * mem::size_of::<Node<u8>>() - 1;
        static mut MEMORY: [u8; SZ] = [0; SZ];

        pool!(A: u8);

        // empty pool
        assert!(A::alloc().is_none());

        A::grow(unsafe { &mut MEMORY });

        let x = A::alloc().unwrap().init(0);
        assert_eq!(*x, 0);

        // pool exhausted
        assert!(A::alloc().is_none());

        drop(x);

        // should be possible to allocate again
        assert_eq!(*A::alloc().unwrap().init(1), 1);
    }

    #[test]
    fn destructors() {
        static COUNT: AtomicUsize = AtomicUsize::new(0);

        pub struct X;

        impl X {
            fn new() -> X {
                COUNT.fetch_add(1, Ordering::Relaxed);
                X
            }
        }

        impl Drop for X {
            fn drop(&mut self) {
                COUNT.fetch_sub(1, Ordering::Relaxed);
            }
        }

        pool!(A: X);

        let x = A::alloc().unwrap().init(X::new());
        let y = A::alloc().unwrap().init(X::new());
        let z = A::alloc().unwrap().init(X::new());

        assert_eq!(COUNT.load(Ordering::Relaxed), 3);

        // this runs `X`'s destructor
        drop(x);

        assert_eq!(COUNT.load(Ordering::Relaxed), 2);

        // this leaks memory
        mem::forget(y);

        assert_eq!(COUNT.load(Ordering::Relaxed), 2);

        // this forgets `X` without leaking memory
        z.forget();

        assert_eq!(COUNT.load(Ordering::Relaxed), 2);
    }
}